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We investigate the potential energy surface apamodel with infinite range interactions. All stationary
points can be uniquely characterized by three real numberag, a_ with a,+ag+a_=1, provided that the
interaction strengthu is smaller than a critical value. The saddle indgxs equal toag and its distribution
function has a maximum af'®*=1/3. Thedensityp(e) of stationary points with energy per parti@eas well
as the Euler characteristige), are singular at a critical energy(u), if the external fieldH is zero. However,
e.(w) # v(w), wherey(u) is the mean potential energy per particle at the thermodynamic phase transition
point T.. This proves that previous claims that the topological and thermodynamic transition points coincide is
not valid, in general. Both types of singularities disappeatfer 0. The average saddle indexas function
of e decreases monotonically withand vanishes at the ground state energy, only. In contrast, the saddle index
ns as function of the average energfny) is given byng(e)=1+4e (for H=0) that vanishes a¢=-1/4> v,
the ground state energy.
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I. INTRODUCTION [12,13 it was proven thai(e) also becomes singular af
=v.. In addition, it was showij12,13 that the type of sin-
Topological features play an important role in severalgularity depends on the order of the phase transition.
branches of physics. Examples in condensed matter physics y(e) is directly related tiM(e,Ny), the number of station-
are discussed in Refl]. Those examples do not include ary points of the PES of N-particle system with energye
thermodynamics and phase transitions. That topological corand saddle inders=N¢/N [9],
cepts might be relevant faquilibrium phase transitionkas

already been emphasized long time §pand that they can N
be very useful in condensed matter physics has been demon- x© =2 (- 1)MM(eNy). (1)
strated recently3,4]. Ng=0

Usually, equilibrium phase transitions are indicated by
singularity at the transition temperaturgof thermodynamic
guantities, like free energy, specific heat, etc. One may as
whether other indications for such phase transitions reall),p
exist. This question has been studied by several groups in
recent years. Geometrical entities like the Ricci curvature, M(e.Ns) ~ exdNs(e,ny)], 2
anlfsé??glganoar:e;giﬁrl;g:%urr]r?c\J/ dZ)I(F:/sirt]k? nria\ll;/;? #g‘%?]g%&heres(e, ny) is the configurational entropy per particle. The
interactions and dimensiai=2,3[5], a nearest-neighbap* corresponding density of statpée,ny) is given by
model ford=3 with O(n)-symmetry(n=1,2,4 [6] and ind J
=1,2 with Q1)-symmetry[7]. It has been found that both p(e,nd = —M(e,Ny) ~ exdNs(e,ny)]. (3
quantities exhibit a singularity at a critical energy per par- Je
ticle, e., for those dimensions for which an equilibrium phase
transition occurs at.>0. Furthermorey, the internal en-

aNS is the Morse index, i.e., the number of negative eigenval-
yes of the corresponding Hessian matrix of a stationary
oint. M(e,Ny) is an exponentially large number > 1,

The relationship between Eqgl) and (3) leads to the as-
ergy per particle aff,, equalse,, i.e., the geometrical and sumpt_ion that _the singularity of(e) may originate from a
thermodynamic singularity occur at tsameenergy. It has SPecific behavior op(e,ny for N—c or that ofs(e,ny).
also been speculatd@,7] that these singularities are related  1he density of statep(e,ny) plays an important role in
to qualitative changes in the topology of the potential energ)FhE mvestlgatlon_of the PES._For instance, one can define the
surface(PES of those models. That this is true indeed has@verage saddle index for a fixed energy
been proven first for anean-field X¥model[8]. 1

One of the most interesting tc_)pologlcal quantities is the n(e) = f dn, nep(e,ny) (4)
Euler characteristig [3,4,9 which is a topological invariant. 0
For the two-dimensional nearest neighlgdrmodel[10], the
mean-field XY [11] and mean-fieldk-trigonometric model and the average energy for a fixed valuengf
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o The outline is as follows. The mean-fiefit model and its
e(ny =f de e fe,ny). (5 basic properties will be discussed in the Sec. Il. In Sec. Il
— we will investigate the topological properties of the model.
o _ ] In particular, we will prove that the claim that topological
In the limit N— o the averagesg(e) ande(ny) are simply the  ang thermodynamic transition points coincide is not correct,
values that maximize the configurational entropy, i.e., the)in general. The final section contains discussion where we
are solutions of the equations explain the origin of this discrepancy. Some more technical
details are given in the Appendix.
Eem=0, Z@ny=o. ®)
dng Je Il. MEAN-FIELD ¢4 MODEL
The saddle index properties of a PES have also played an | et x, be a scalar displacement of a particle from a lattice

important role in another respect. Studyigigssy dynamics sjte n. We consider the following potential energy:
and idealdynamical glass transitiofil4] for liquids it has

been found numerically[15,1§ that the temperature- N “ N 2
dependent average saddle index practically vanishes at a V(XyH):EVO(XnaH)_ﬁ > X (8)
temperaturel*, which is close to the mode-coupling glass n=1 n=1

transition temperaturel, [14]. However, this conclusion
should be taken with some care. First of all most saddl
points were quasisaddlessee the discussion in Refs.
[17-19) and second, plotting logy(T) (or a related quan-
tity) versus 1T does not exhibit a quasisingular behavior at

Tc [20,23. That n(T) vanishes atT=0, only, has been hat hecomes symmetric fét=0. The final term in Eq(8)
proven for thek-trigonometric model[13]. This indicates represents the harmonic interaction betwesh particles
that ny(T) for systems withself-generatedlisorder behaves \yith a coupling parameter = 0. The reader should note that
differently than for systems where the disordeqignched. the potential energy and the displacement can always be
For the latter it has been proven tha{T) vanishes at the scaled such tha¥,(x,H) has thex dependence given in Eq.
dynamical transition point, at least for mean-field-like mod-(g)_ This type of model was used to describe structural phase
els[22]. transitions[23]. In contrast to the mean-field models studied
A numerical determination of thieue saddles of a binary jn Refs.[8,11-13 there is a nontrivial coupling constapt
liquid with particle numbeN <13 gives evidence thai(e)  which cannot be put to one by an appropriate scaling of the
vanishes at an energy, which still depends omN [17]. This  temperature.
evidence holds for both cases where the average plotted Some thermodynamic properties of the model described
versuse andn; is plotted versug [17]. Whether this vanish- by Egs.(8) and(9) as well as some features of its PES were
ing ate* is spurious or not is not known. It is obvious why already investigatefR4]. Let us recall these results and start
vanishing ofng at T* or e* may be relevant. In that case, the with the thermodynamic behavior. Due to the infinite-range
system is mostly close to local minintas=0) for T<T* or interaction the mean-field approximation beconegactfor
e<e* and the dynamics is dominated by activated processes\ — . This leads to the self-consistency equation for the
in contrast tol > T* or e>e*, where the particles dynamics order parametefx)=(x,)(T,H),
is more flowlike. Hence, vanishing afy(e) may indicate a
gualitative change in the dynami¢$5,14. 1(~ Vo(x,H) = u{x)x
There is another result presented in §é&fZ] which con- 00 = }f dx xexp{— T } (10
cerns the distribution function of the saddle ind&xs),

depending on theN-particle configurationx=(xy,...,Xy)-
?/O(X,H) is an asymmetric on-site potential,

Vo(x,H) = = xH - 2x2 + 1x*, 9)

—00

where Z is the corresponding partition function a@e=1/T.

(" Of course, a phase transitigeecond ordgroccurs at some
p(ng) = i de pe,ny). (") T_for H=0, only. T, follows from
It is found thatp(ny is a Gaussian with a maximum at f dx ¢ ex - Vo(x,0)/T¢]
ng®=1/3. Although the physical relevance of this result is T.= p— (11)
not clear, it seems to be an interesting property of the topol- ”
ogy of the PES. 3 dxexd - Vo(x,0)/Tc]

We hope that the exposition above has made obvious the
role of topological features for both the thermodynamic andror 0< w<1 one finds
dynamic behavior. It is the main purpose of our paper to
analytically investigate for anean-field¢* model the exis- To(w) = p+ O(u?) (12
tence of a singularity in the topology of its PES and the
relation to a thermodynamic singularity and to calculate thewhich yields for the average potential energy per patrticle
saddle index properties discussed above. UT)=limy_.. N"KV(X))(T,H=0) at T,
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%= uTo) == 4(1 = 2) + O(?) (13) 0042 0%,
which is always larger than the minimum value -1/4 of Y
Vo(x,0). 0.1 u=02, H=0

Let us now turn to the stationary points as discussed in
Ref. [24]. With the “internal” field

N
y
Hint = 1 2 % (14)
n=1

the solution ofdV/dx,, reduces to that of

X2=X—He=0 (15)

with the effective field[25]

Heff: H+ Hint- (16)

For |Heq| <H.=2/(3v3) there are three real roots of 4.5
which will be denoted by X (He), o=+,0,—-. It is
X;>>Xg>X_. A stationary point ofV is characterized by,

the number ok, in x which are equal tx, (Hgs). Permuting
the particle indices vyields stationary points with the same
potential energy. Sincéx,,} are displacements and not posi-
tions of particles in a liquid, these permutations should be
counted aglifferentstationary points. Hence there are

P(N,,No) = ) s ; ' ———
N, ! Ng! N_! 0.0 0.2 0.4 0.6 08 o 10
+
stationary points of clas§\.,No,N.), where FIG. 1. (a) a, dependence af(a,,ap) for ©=0.2 andH=0; (b)
same forH=0.1. Dotted lines locate the maxima. Note the concav-
E N,=N, (18 ity of vy, ag) in a, for H=0 and its symmetry with respect to the
ag

maximum positional*=(1-ag)/2 for H=0.

i.e., N.=N-N,—-Ng. The characterization of all stationary
points byN,, Ny, andN_ or, equivalently, by a,, ag) = D a,Vo(Xo(Her) H) = i[|-|eﬁ_ H2. (21)
1 - [0 (o 1 2,(,L

RN 2 a,=1 (19 Figure 1 presents(a,,ag) as a function ofa, for different
7 values of the parameters.

proves(see, e.g., Sec. lito be extremely useful. Having  Equation(21) holds for|Heq|<He. One can easily prove
specifieda, we can determinédy(a,, @) from Egs.(14)  thatthe latter is guaranteed for arbitrdry,; with =, o, =1 if

and (16y: ~H(1-3w) <H=(1-3wH,. (22)
He=H + w>, a Xy (Heg) - (20) This implies t_henepgssar;condition n< 1/3 (cf. also Ref.
o [24]). w=1/3 is acritical value for the coupling parameter at

which the PES changes qualitatively. If inequality E2R) is
[We omit the argumentd andu for brevity and we take into  viplated, the stationary points amt uniquely classified by
account thatv_ can be expressed hy,,ao, due to Eq(19).  {« } [26]. Therefore we will restrict ourselves jo<1/3, in
Also we will mostly drop the argumentSr,,ag) of Herr.]  the following. What remains to be done is to determine the
Finally the stationary points of clagdl,,No,N-) are given  saddle indexn, of these stationary points. The answer is
by simple[24], because

X(Heff) = (3(+(Heff), . 17 \xO(Heff)’ . 17 ZC—(Heff)’ : ,) Ng= ag. (23)

N, times N, times N_ times This has been proven fét=0 in Ref.[24] by determination

of the numbem of negative eigenvalues of the Hessian at
and its permutations. Similarly for the potential energy perstationary configurations wittNy fixed. The result is that
particle (@, , ) follows: Ns=No, which implies Eq(23). Validity of Eq. (23) can also
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be seen as follows. Ift=0 andH=0, the stationary points N
of V are given by those 0¥, and the sign of the eigenvalues p(e)= >, p(eny, (27
of the Hessian equals the sign\df. SinceN, is the number No=0

of particles with position(H), which is on the concave part \ogjecting the irrelevant prefactor one can immediately
of Vo, i.e., Vo[xo(H)] <0, it is Ng=Ns. Ng is a topological \ite (ap=nJ)
invariant for 0= u<1/3. Consequently Eq(23) remains

true for all x<1/3 and allH obeying Eq.(22). p(e,ng ~ P(N, (e ap),Np), (28
whereN, (e, ap) = o, (e, ap)N follows from the solution of the
IIl. STATISTICS OF STATIONARY POINTS equation
A. Saddle index distribution ey, ap) = € (29)
+1 - <.

We have shown in Sec. Il that all stationary states of th
mean-field¢* model are characterized Ky, }, provided in-
equality Eg.(22) holds. ag=ng is the saddle index. Conse-
quently there are in total™3stationary points, from which™2
are local minima. The saddle index distribution follows from © P(N,,

eI'his equation has two solutiong («g,e) which are derived
and discussed in Appendix B.

With the use of the Stirling formul®(N,,Ny) simplifies
No) ~exd Ns(e, ap)], thus one obtains Eq¢3) with

Eq. (17): the configurational entropy given by
N-Ng 3-NoN-Ney s(eag) =-aglnag—a’ Ina’ - oM Ina, (30
ndg=3"N2 P(NyNg=—"——. 24
p(ny N%O (NN Ng! (N—Ng)! 24 wherea'”=1-ay- " and we have taken the-) branch of
. o . Eq. (Bl) that makes the dominant contribution into
Using the Stirling formula folN>-1 one obtains P(N.,No) for H>0. ForH=0 one can also restrict oneself to
p(ng) ~ exg NNy, af), due to the symmetry. Note thate,ny) is nonzero and

. . o given by Eq.(3) only in the energy window
where the configurational entropy is given by

Unmin(@p) < €< Unad ap), (31

_ 1-ng
s(ng == [ nsInns+ (1 = ng)In o | (25) vv_here vmm(ao):u(l—ao,aq) (see Fig. 1 and Um_ax(ao) is

_ . i o . given by Eq.(A7), otherwisep(e,ny)=0. Alternatively one
The maximum ofp(ny) is at ng>=1/3 which is obvious  can say that Eq(3) is valid in the window of saddle indices
since P(N,,Ng) has a maximum alN,=Ny=N_=N/3. It is ,
interesting that this result based on the double-well character ag™(e) < ap =< af™(e), (32)
of the local potential, coincides with the numerical finding . (maxy _
for binary Lennard-Jones clustef47]. We stress that the where(mitn?e boundary values S"‘_‘t'Sfymi“(ao )=e and
validity of n{®=1/3 ismore general. Suppose there are novma{ag ) =€ From Eq.(A7) one finds
interactions. Then thal-particle problem separates into that (min)/ oy — o2
of N independent particles in double wells, for which ag (€)= 1+4de=2HTu, (33)
P(N.,No) is still given by Eq.(17). Turning on an arbitrary  yhereasa{"*(e) can be found with the help of EG21) or,
interaction will not destroy the one-to-one correspondenceyyproximately, with the help of EGA5). The dependence of
between stationary points ari@ll,,N_,No), up to a critical (e n) on n, is shown in Fig. 2 for zero and nonzero field.
interaction strength. At this critical strength, e.g., exponen- | et ys discuss the main features sté,ny) presented in
tially many metastable configurations may become unstablq;ig_ 2. For a more detailed analytical discussions@,n,)

Accordingly, ng®*=1/3 holds up to that critical coupling, the interested reader is referred to Appendix B. We begin

I.e., itis a topological invariant. with H=0 [see Fig. 2a)]. The maximum ofs(e,ny with
respect ton, is denoted bynge). Because of the relation
B. Calculation of the density of statesp(e,ny) betweenp(e,ny ands(e,ny) given by Eq.(3) it is obvious

The density of stationary points of a PES with eneggy that forN— > the maximum positiom(e) is identical to the
and saddle inder, that was mentioned in the Introduction is averaged saddle index(e) given by Eq.(4). In Appendix B
defined by the existence of aritical energye.(u) is proven.s(e,ny) as

function of ng has a maximum within the domain of for

i e<e.(u) and a maximum at the left border of its domain for
_ _ c\M
p(e,ny) = szo P(N..,No) (v x4, ao) — €), (26) e=e,(u). This implies that the slopés(e,ng)/dng at ne) is
_ * continuous ine, but not differentiable, i.e., the “curvature”
whereP(N,,Ny) is given by Eq.(17) and #s(e,ng)/onZ is discontinuous ire at e=e,(u). This is the

origin of the topological singularity, discussed below. Figure
3(a) presentn(e) and reveals the singularity af(«). Note
The densityp(e) of stationary points with energg follows  thatnge) contains a branch that is independent of the inter-
from action [see Eqgs.B6) and (B7)]. For e very close to the

NozaoN: nSN, N+: a+N.
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FIG. 2. (a) Configurational entropg(e,ng) versusn for differ-
ent energies and zero fiel(h) same for nonzero field.

ground state energyy(w) [cf. (A6)] one obtains the power-
law behavior

ng(e) ~ [~ vo(w)] (34)
with &(u)>1, if u is small enough. Note that(e) — 0 for
e—vg(u). The averaged saddle indexe) takes the critical
value n(sc)(,u):ﬁs(ec(u)) shown in Fig. 4. This figure also
includes the asymptotic result of E@®5) for u—0.

Instead of fixinge, one can also determine the maximum
positione(ny) of s(e,ny) for given n.. e(ny) is the averaged
saddle energycf. Eq.(5)] as function ofng. It is easy to get
‘e(ny), since the number of stationary configurations is maxi-
mal for o, =a_=(1-ng)/2. This yields for the effective field
Her(a,=(1-ng)/2,09=n) =0 which implies X,(a,=(1
-ng/2,ap=ngd=%1 and xy(a,=(1-ng)/2,ap=ny)=0 and
this in turn leads to

0.1

0.1

BNy = v(a, = (1-n/2,ap=n) = - (L -nJ/4. (35)

The reader should note th@y the inverse functiomy(e)
(see Fig. 6 of e(ny) turns to zero aé=-1/4 which equals the

0.20

0.05

0.00

PHYSICAL REVIEW E 70, 036125(2004)

0.8 k=02
0.6
0.4
0.2 H=015 .
,,»»,,,/ """
0.0 “"";_‘ - M T T T T T
-0.5 -0.4 -0.3 -0.2 01 €00

FIG. 3. (a) Averaged saddle index(e) versuse for £=0.1,0.2,

1/3 andH=0; (b) same foru=0.2 andH=0 andH=0.15.

of p(e,ng with respect tong for fixed e is not generally
related to its maximum with respect &for fixed n;.

Now let us takeH # 0 [see Fig. 8)]. As discussed in

n“(w)

Appendix B,s(e,ny) has always a maximum at(e) as func-
tion of ng within its domain.ng(e) is shown in Fig. 8). The

5

04

0.0

T
0.1 0.2 03 W

lowest energy of the on-site potential, but is above the FiG. 4. u-dependence of the critical average saddle indgx
ground state energyo(w) and(ii) e(ng) is not the inverse of  x (y) for 0= u=<1/3(solid line). The dashed line is the asymptotic
ng(e). This difference is related to the fact that the maximumresult Eq.(B5) for u<1.
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n(e)
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u=0.2
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FIG. 5. Saddle indexy(e) versus averaged energy for u
=0.2 andH=0 and 0.15.

nonsingulare-dependence faf # 0 can clearly be seen. The
average energg(ny) or its inverseng(e) can be derived ana-
lytically (see Appendix B The result fomg(e) is shown in
Fig. 5.

Having determinedig(e) for H=0 andH # 0, one can now

calculate the energy-dependent configurational entropy that

follows from Eq.(27), in the limit N— oo,

s(e) =s(e,n(e)). (36)

The result is shown in Fig. 6. As can be seen from Fi),6
s(e) has a discontinuous second derivative fér0 at e

PHYSICAL REVIEW E 70, 036125(2004)

'20 T T T T L} ¥
-0.5 -0.4 -0.3 -0.2

FIG. 6. (a) Energy dependence of the configurational entropy
s(e) for different interaction strengthx, with and without field.

=e(w). In Fig. @) these points are marked by circles. The Dashed line is the solution fqe=0 andH=0 and the circle indi-

high-energy branch of(e) has the form of Eq(25) with
nge)d 1+4e. It attains a maximum fong(e)=1/3 that im-
pliese=-1/6, independently of the interaction.

C. Euler characteristic x(e)

cates the location oé.(w); (b) Derivative of the configurational
entropy showing a transition a=e.(u) for H=0.

mined by vy @p) < e is dominatechot by the maximum of
M(Ng) on Ng but by Ng on the boundary of its interval, i.e.,
by N satisfying v, (Ns/N)=e. One can easily see that this

It turns out that for the model under consideration in thecontribution to y(e) never exceeds that from the range

limit N— oo the Euler characteristic of Eql) satisfies

X@~p@, hixel=sie. (3
Calculation ofy(e) for large N is similar to that ofs(e), as
suggested by the similar form of Eq®) and(3). The only
difference is thaM(e,Ng) used in the calculation of(e) is,

unlike p(e,ng), nonzero foruy,,{ap) <e. In this case it is
independent of the energy and has the form

AR N

M(Ng) = (39)

Umin( o) < €< umad @), thus one obtaingy(e)| ~ p(e) for N
— 0,

The reason for such peculiar behavior of the contribution
from the regionum,{ap) <e is the sign alternation iry(e)
plus the specific form oM(Ny). For instance, as all station-
ary points are below the levek0, one findsy(e) for e>0,
by just summing over alNq,

N

x(e>0)= > (-1)MM(Ng =1.
Ng=0

1 (N=NJ!'
Nst (N=N)! This result is exact and it has a transparent topological mean-
similar to Eq.(24). Hence there are two different contribu- ing. Replacing the sum by the maximal summand value
tions into x(e). It can be easily shown that the contribution M(N/3) would be an error. Even simplifying Eg38) with
from the rangevmin(ag) <e<uvpmalag) for N—o coincides  the help of the Stirling formula foN>1 in the sum would
with that of p(e) ~exdNs(e)] that was studied above up to lead to an exponentially large result instead of 1. Therefore,
an irrelevant prefactor, in spite of the sign alternation in Eq.one should be cautious in applying the saddle point method
(1. In contrast, the contribution from the rangeNf deter-  to the right-hand side of Eq1).
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IV. DISCUSSION gies are the same. This implies tlegfw) is the same. How-
@ver, since the calculation af.(u) [cf. Eq. (11)] involves
o(x) for all x, the critical temperature will be different for
the modified on-site potential.
The discrepancy between the topological and thermody-

We have investigated the statistics of stationary points an
topological properties of the analytically tractable potential
energy surface of @* model in a symmetry-breaking field

with interaction of all pairs of particles with the same o o o
strengthy. For this model the mean-field approximation be-N2mic singularities can also be traced back to an unjustified

comes exact in the thermodynamic linht—c. For H=0 comparison of a continuous modghermodynamicsand a
there is a second-order phase transition at the critical ten@screte_mode(topolog)b. More logically, the energy O.f all
peratureT (u) that is analytical inu. the stationary points can be represented by an Ising-type
We have shown that the distribution of the saddle indiced @miltonianF({oi}) (for u<1/3) with o;=+,0,-. The_cor-
p(ny), wheren.=N./N and N, is the number of unstable di- '€SPonding canonical  partition  function Z(T)=Tr
rections at a stationary point has a maximumngtn™ exd-H({oi})] can be calculated from the density of states

=1/3. Interestingly this value is consistent with that found P(®) @s

for small binary Lennard-Jones clust¢ts]. Whether or not

this is an accident is not clear. Our result originates from the Z(T) =f de ple)exd - Ne/T]. (39
fact that all stationary points can be labelled by symbolic

sequences (oy,...,00) With  0,=+,0,—. The low-  Eyidently a singularity ofZ(T) at the corresponding transi-

temperature anomalies of structural glasses are usually €¥pn temperaturd?, results from the underlying singularity of
plained by the existence of two-_level systems arising frqm ah(e) ate,. Obviously in this case,(w) =(H)(T.)/N=e,(u) is
ensemble of double-well potentials. As the smallest “unit” ofq fijjeq. But the thermodynamics of this discrete model does

a PES _Of_ a cl_assicatl-parti_cle system, one may choose the o cpincide with that of the original continuous model, in
local minima including their basins of attraction. But such a, . +; /
particular, T, # T,.

choice does not fully encompass the saddle. Taking the next 1,4 jgeq of an at least qualitative relationship between the
larger unit, a pair of local minima and.the.|r common Saddle,’thermodynamic singularity and the topological singularity is
one arrives at a double-well characterization of the PES. Th'§upported by the following observation. At the thermody-
i max_— ; :

could explain whyn™=1/3 for small clu%sis and for lig- amic transition point there appears a spontaneous breaking
uids. We have also argued that the vah.g4 =1/3isa10-  (f the left-right symmetry for the displacements, which is
pological invariant for an entire family of” models. In any  gquivalent to emerging of a nonzero temperature-dependent
case, it would be important to determing®*for other, €9 internal field forT <T.(u). On the other hand, the stationary
I_|qu/|gllke models and to check whether it equals agalft* 1 fiqurations witre> e,( 1) and with maximum weight cor-
=1/3. respond toa,=a_. This implies that the effective field de-

For our model the absolute value of the Euler characterﬁned by Eqgs.(14) and (16) satisfiesH.;=0. However, for
istic x(e) is essentially the same as the density of stationary, (w) itis o + a_and hence q # OGﬁThérefore a épon-

) . 2 X L o e . ,
pomts p_(e) n .the "T“'t N—, see Eg.(37). .It would be taneous symmetry breaking occurs at both singularities.
interesting to investigate the g(_eneraht_y Qf this result. . The energy or temperature dependence of the averaged

For H=0 we have found a singularity ip(€) and thus in g5 4dje indesn, seems to play a role for the dynamical fea-
[x(e)| at the energye(u) given by Eq.(B5). _ec(é‘) ISnonana-  y,res of supercooled liquids. For the present model we have
Iytic in u. At e=e (u) the second derivative® In|x|(e)/ _de2 found thatng(e) vanishes at the ground state energyonly.
is discontinuous, as fou_nd for the models studied in RefsThis is consistent with recent results TUT) showing that
[10-13. In agreement with these papers, we also have f(_)unﬂ::O atT=0, only [13]. Taking the analogy to mean-field-
that the topological smgularl_ty @sappegrs for nonzero fieldjjke spin glass models, this would imply that no dynamical
as well'as the the(modynamm smg'ulapty. In this respect, W&ransition (or crossover could occur at finite temperatures
would like to mention a recent publlc_atpn RE27], where it [22]. The averaged energgn,) as a function o, is notthe
IS proven thatatopologpal smgul_a_nty isneecessaryondi- inverse function ofng(e). In particular n(e) vanishes at
tion for a thermodynamical transition to take place. HOW'e*(H)>v0. Whether dynamics changes qualitatively at

ever, at variance with earlier woflt0-13, this singularity is " o .
e . e* (H) or any other characteristic temperature would be in-
not related to the thermodynamic singularity of our model a .
eresting to study.

€:(x) does not coincide withy(y), the average potential Finally, we would like to mention that after submission of

enﬁ_rr?y at tempefrarl:rrfc(;é?. b de ¢l it his paper we learned about a similar study of the same
€ reasons for this discreépancy can beé made clear witl, , o [28], where the authors find, among others, the same

the help of the following argument. Let us smoothly modify : : -
the local potentialVo0) in the intervals| <=, ~1-e()], Dol ciecrepancy between the thermodynamical and topo

[-1+e(n),—e(w)], [e(w), 1-e(w)], and [1+e(u),] for
given 0<e(u)<1. If wis small enough, which implies that
the internal field is small enough, then the three roots of Eq.
(15) are within the interval$o—c(u),0+&(w)], o=+,0,-,

in which the potential has not been modified. Accordingly, In this Appendix we investigate the properties of
the roots and therefore the stationary points and their ener{«., ag) defined by Eq(21). For the discussions in Sec. llI,

APPENDIX A: PROPERTIES OF v(a,, ap)
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the first and second derivatives ofa,, agy) with respect to
a, will be useful. A straightforward calculation making use
of Egs.(15), (16), and(20) yields
a‘U(CY-H(IO)
Jda,

1“&’0_1 (A8)
2 2u

Equations(A7) and (A8) are thus valid fofH|< w(1-ayp).

Olgrmax)(ao) =

= Vo0 (Hetr), Herr) = Vo(x(Herr), Her) APPENDIX B: CONFIGURATIONAL ENTROPY

(A1) In this Appendix we present analytical results for the con-
figurational entropys(e,ny). In particular, forH=0 the exis-
tence of a critical energg.(w) will be proven, at which
singular energy dependence occurs.

First we have to investigate(a,, «p). It is convenient to
use the approximate form af(«,,ap) given by Eg.(A5).

SinceHg#=0 impliesx,=%1 [see Eq.(15)] it follows that

dfay,ap)l da,=0 for Heg=0. That is, the maximum of
Uy, ag) with respect toa, corresponds tid.;=0. For the

second derivative we get

Pulay, ap) IH ey, ap) Then Eq.(29) becomes quadratic, and one obtains two solu-
5 =~ DXu(Her) - (He] =" (A2)  tions
oy ay
with o) oM ) \/ [Umasl @) = e][; ~p(L = 3a9)/2]
y73
Mexlay, ap) Xe(Hegr) = X_(Hegp)
eff 0 =u +\ 1 eff, eff (A3) (Bl)
&a+ 1 _ E a’(,
B ~ 3x%(Hep) — 1 where o™ (a;) and vyaa) are given by Eqs(A8) and

_ - o (A7), respectively. Note that this result becomes exact for all
Sincex,-x_>0, the “curvature”#v/da; is negative, i.e., , with 0<u<1/3 provided thae is close t0vaap).

A ay, ag) is concave ina,, provided dHeq/ dor, > 0. This is The density of stationary points(e,n) can be used to
true if u is small enough, as can be seen from &B). calculate the statistics of saddle indices, see Es(6). The
The functionu(a., ap) can be computed analytically near yajue ofng(e) that maximizes the entrops(e, ap) on ay is
its maximum ina, by using the expansions the solution of the equation
X (Heff) = = 1 +Hel2, Y 1-ap-al” 1-aqp- oV
“In 0(+) * +1In . =+ -0 (B2
(961’0 a, [2%)
XO(Heff) =- Heff,

for «ag, if this solution exists in the interval of Eq32).
Xi(Hef) = 1 +Heql2 (A4)  Otherwise the maximum of(e, ap) is attained at the left
boundary of thex, window, aozag“'")(e) [see Fig. 2a)]. The
latter solution exists only foH=0. It corresponds to the
et = - L1 —ag) + H2 1 [H+p(a,+ag— )P maxima of the curves(a,,ap) in Fig. 1(a), i.e., to
2u 2p 1 - u(l-3ag)/2 1-a
(A5) 2

Analysis shows that corrections to this formula in the wholeone can see from EqB1) that aa(j)/aao diverges fore

region O<a.<1-aq are of ordery®, u’H, and uH? ie, .y (a), ie., forag— o™ (e). One can check that in the

Eq. (A5) is a very good approximation for not too large  caseH=0 this divergence is compensated for by the log
For instance, the ground-state energy following from Eqgactor that tends to zero. Fét+ 0 there is no such compen-

nearHqs=0. The result is a parabola i,

)= ) = ") =

(B3)

(AS) in the caseH =0, sation, and the left-hand side of E(B2) diverges atay
_ _ 1 2u —a"™(e), thus Eq.(B2) always has a solution, see Fig.
vo(,u):v(O,O):—:1 1+1_ ) 2(b).

H Let us consider the caseé=0 and find the condition that
is in accord with the exact twofold degenerate ground-statéhe solution of Eq(B2) isjustaozagm'“)(e). Simplifying this
energy, equation fore— uy{ @p) ONe obtains the transcedental equa-

tion
() = 11,00 = 0,0) == 5(1 +p)?, (A6)
up to the termsu?, and the relative error is only 0.0125 for _1op = Sag)f2 + In1 —% -9, (B4)
n=1/3. Theexact value of the field-dependent maximal po- 4u(1 - ap) 2ag
tential energy that also follows from EGAS) has the form o solutionagc)(u)zn(s)(ﬂ) that is plotted in Fig. 4 and the
1 2 corresponding energg’®(w) are critical parameters that de-
Unad @) = = Z(l —ap) + o (A7) fine the boundary between different regimes. In particular,

H al¥(1/3)=0.1774 ande'®(1/3)=-0.2056. Foru<1 one

The corresponding exact value ef is can solve Eq(B4) analytically,

036125-8
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1 1
e (w) = af () = Eexp<— @),

e(p)=-— > =

—n©
1-n{ (u):_1+1exp<
4 4 8

1
- a) (B5)

PHYSICAL REVIEW E 70, 036125(2004)

energy levels below this maximum. One can show that
ng(e)— 0 for e— (). This dependence has the form given
by Eq. (34). However this dependence is only realized for

the energies very close to the ground stajfig:). The func-
tion ng(e) is shown in Fig. 3 forH=0 andH #0. It has a
discontinuous derivative a=e,(w) in zero field. This dis-

Note thate® () is always above —1/4, the ground-state en-continuity disappears fa # 0.

ergy without interaction. Now one can write down the com-

bined expression fong(e) in the caseH=0,

ng(e), wulp <e<edw),
ng(e)=1nl"*(e), eln) <e=<0, (B6)
0, O=se

Here yo(u) is the ground-state energy; (e) is equal toa,
that solves Eq(B2), and

e = 1 + 4e. (B7)
Note that the high-energy branaf®{e) is independent of

One can also usp(e,ny) to calculate the average energy

‘e(ny) for a givenn,. From the second of Eq&) one obtains

1-ay- af)

In =0,

ol
which is simpler than EqB2). From its solution

1-ng H*  1-3n
4 4 1-pl-3092

elng =- (B8)

one obtaingy(e) shown in Fig. 5 that is almost linear @in
the considered range of parameters, E9). Note that, in

and is thus the same as for a system of noninteracting pacontrast tong(e), the quantityny(e) found from Eg.(B8)

ticles. This contribution is due to the maxima dfa, , ap)
ey
n

[see Eq.(B3)] whereasn,

(e) is the contribution from the

turns to zero not at the ground-state energy bug=at1/4
-H2/[2(2-w)].
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