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We investigate the potential energy surface of af4 model with infinite range interactions. All stationary
points can be uniquely characterized by three real numbersa+,a0,a− with a++a0+a−=1, provided that the
interaction strengthm is smaller than a critical value. The saddle indexns is equal toa0 and its distribution
function has a maximum atns

max=1/3. Thedensitypsed of stationary points with energy per particlee, as well
as the Euler characteristicxsed, are singular at a critical energyecsmd, if the external fieldH is zero. However,
ecsmdÞycsmd, whereycsmd is the mean potential energy per particle at the thermodynamic phase transition
point Tc. This proves that previous claims that the topological and thermodynamic transition points coincide is
not valid, in general. Both types of singularities disappear forHÞ0. The average saddle indexn̄s as function
of e decreases monotonically withe and vanishes at the ground state energy, only. In contrast, the saddle index
ns as function of the average energyēsnsd is given bynssēd=1+4ē (for H=0) that vanishes atē=−1/4.y0,
the ground state energy.
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I. INTRODUCTION

Topological features play an important role in several
branches of physics. Examples in condensed matter physics
are discussed in Ref.[1]. Those examples do not include
thermodynamics and phase transitions. That topological con-
cepts might be relevant forequilibrium phase transitionshas
already been emphasized long time ago[2] and that they can
be very useful in condensed matter physics has been demon-
strated recently[3,4].

Usually, equilibrium phase transitions are indicated by a
singularity at the transition temperatureTc of thermodynamic
quantities, like free energy, specific heat, etc. One may ask
whether other indications for such phase transitions really
exist. This question has been studied by several groups in
recent years. Geometrical entities like the Ricci curvature,
and dynamical ones like Lyapunov exponents were used for
a classical planar Heisenberg model with nearest neighbor
interactions and dimensiond=2,3 [5], a nearest-neighborf4

model ford=3 with Osnd-symmetry(n=1,2,4) [6] and ind
=1,2 with O(1)-symmetry[7]. It has been found that both
quantities exhibit a singularity at a critical energy per par-
ticle, ec, for those dimensions for which an equilibrium phase
transition occurs atTc.0. Furthermore,yc, the internal en-
ergy per particle atTc, equalsec, i.e., the geometrical and
thermodynamic singularity occur at thesameenergy. It has
also been speculated[6,7] that these singularities are related
to qualitative changes in the topology of the potential energy
surface(PES) of those models. That this is true indeed has
been proven first for amean-field XY-model [8].

One of the most interesting topological quantities is the
Euler characteristicx [3,4,9] which is a topological invariant.
For the two-dimensional nearest neighborf4 model[10], the
mean-fieldXY [11] and mean-fieldk-trigonometric model

[12,13] it was proven thatxsed also becomes singular atec

=yc. In addition, it was shown[12,13] that the type of sin-
gularity depends on the order of the phase transition.

xsed is directly related toMse,Nsd, the number of station-
ary points of the PES of aN-particle system with energyøe
and saddle indexns=Ns/N [9],

xsed = o
Ns=0

N

s− 1dNsMse,Nsd. s1d

Ns is the Morse index, i.e., the number of negative eigenval-
ues of the corresponding Hessian matrix of a stationary
point. Mse,Nsd is an exponentially large number inN@1,

Mse,Nsd , expfNsse,nsdg, s2d

wheresse,nsd is the configurational entropy per particle. The
corresponding density of statespse,nsd is given by

pse,nsd =
]

] e
Mse,Nsd , expfNsse,nsdg. s3d

The relationship between Eqs.(1) and (3) leads to the as-
sumption that the singularity ofxsed may originate from a
specific behavior ofpse,nsd for N→` or that ofsse,nsd.

The density of statespse,nsd plays an important role in
the investigation of the PES. For instance, one can define the
average saddle index for a fixed energy

n̄ssed =E
0

1

dns nspse,nsd s4d

and the average energy for a fixed value ofns,
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ēsnsd =E
−`

`

de e pse,nsd. s5d

In the limit N→` the averagesn̄ssed andēsnsd are simply the
values that maximize the configurational entropy, i.e., they
are solutions of the equations

] s

] ns
se,n̄sd = 0,

] s

] e
sē,nsd = 0. s6d

The saddle index properties of a PES have also played an
important role in another respect. Studyingglassy dynamics
and idealdynamical glass transition[14] for liquids it has
been found numerically[15,16] that the temperature-
dependent average saddle index practically vanishes at a
temperatureT*, which is close to the mode-coupling glass
transition temperatureTc [14]. However, this conclusion
should be taken with some care. First of all most saddle
points were quasisaddles(see the discussion in Refs.
[17–19]) and second, plotting logn̄ssTd (or a related quan-
tity) versus 1/T does not exhibit a quasisingular behavior at
Tc [20,21]. That n̄ssTd vanishes atT=0, only, has been
proven for thek-trigonometric model[13]. This indicates
that n̄ssTd for systems withself-generateddisorder behaves
differently than for systems where the disorder isquenched.
For the latter it has been proven thatn̄ssTd vanishes at the
dynamical transition point, at least for mean-field-like mod-
els [22].

A numerical determination of thetrue saddles of a binary
liquid with particle numberNø13 gives evidence thatn̄ssed
vanishes at an energye*, which still depends onN [17]. This
evidence holds for both cases where the averagen̄s is plotted
versuse andns is plotted versusē [17]. Whether this vanish-
ing at e* is spurious or not is not known. It is obvious why
vanishing ofn̄s at T* or e* may be relevant. In that case, the
system is mostly close to local minimasns=0d for T,T* or
e,e* and the dynamics is dominated by activated processes,
in contrast toT.T* or e.e*, where the particles dynamics
is more flowlike. Hence, vanishing ofn̄ssed may indicate a
qualitative change in the dynamics[15,16].

There is another result presented in Ref.[17] which con-
cerns the distribution function of the saddle indexpsnsd,

psnsd =E
−`

`

de pse,nsd. s7d

It is found that psnsd is a Gaussian with a maximum at
ns

max<1/3. Although the physical relevance of this result is
not clear, it seems to be an interesting property of the topol-
ogy of the PES.

We hope that the exposition above has made obvious the
role of topological features for both the thermodynamic and
dynamic behavior. It is the main purpose of our paper to
analytically investigate for amean-fieldf4 model the exis-
tence of a singularity in the topology of its PES and the
relation to a thermodynamic singularity and to calculate the
saddle index properties discussed above.

The outline is as follows. The mean-fieldf4 model and its
basic properties will be discussed in the Sec. II. In Sec. III
we will investigate the topological properties of the model.
In particular, we will prove that the claim that topological
and thermodynamic transition points coincide is not correct,
in general. The final section contains discussion where we
explain the origin of this discrepancy. Some more technical
details are given in the Appendix.

II. MEAN-FIELD f4 MODEL

Let xn be a scalar displacement of a particle from a lattice
site n. We consider the following potential energy:

Vsx,Hd = o
n=1

N

V0sxn,Hd −
m

2N
So

n=1

N

xnD2

s8d

depending on theN-particle configurationx=sx1,… ,xNd.
V0sx,Hd is an asymmetric on-site potential,

V0sx,Hd = − xH − 1
2x2 + 1

4x4, s9d

that becomes symmetric forH=0. The final term in Eq.(8)
represents the harmonic interaction betweenall particles
with a coupling parametermù0. The reader should note that
the potential energy and the displacement can always be
scaled such thatV0sx,Hd has thex dependence given in Eq.
(9). This type of model was used to describe structural phase
transitions[23]. In contrast to the mean-field models studied
in Refs.[8,11–13] there is a nontrivial coupling constantm,
which cannot be put to one by an appropriate scaling of the
temperature.

Some thermodynamic properties of the model described
by Eqs.(8) and(9) as well as some features of its PES were
already investigated[24]. Let us recall these results and start
with the thermodynamic behavior. Due to the infinite-range
interaction the mean-field approximation becomesexact for
N→`. This leads to the self-consistency equation for the
order parameterkxl=kxnlsT,Hd,

kxl =
1

ZE−`

`

dx xexpF−
V0sx,Hd − mkxlx

T
G , s10d

whereZ is the corresponding partition function andb=1/T.
Of course, a phase transition(second order) occurs at some
Tc for H=0, only. Tc follows from

Tc = m

E
−`

`

dx x2 expf− V0sx,0d/Tcg

E
−`

`

dxexpf− V0sx,0d/Tcg
. s11d

For 0,m!1 one finds

Tcsmd = m + Osm2d s12d

which yields for the average potential energy per particle
ȳsTd=limN→` N−1kVsxdlsT,H=0d at Tc
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yc = ysTcd = − 1
4s1 − 2md + Osm2d s13d

which is always larger than the minimum value −1/4 of
V0sx,0d.

Let us now turn to the stationary points as discussed in
Ref. [24]. With the “internal” field

Hint =
m

N
o
n=1

N

xn s14d

the solution of]V/]xn reduces to that of

x3 − x − Heff = 0 s15d

with the effective field[25]

Heff = H + Hint. s16d

For uHeffu,Hc=2/s3Î3d there are three real roots of Eq.(15)
which will be denoted by xssHeffd , s= + ,0,−. It is
x+.x0.x−. A stationary point ofV is characterized byNs,
the number ofxn in x which are equal toxssHeffd. Permuting
the particle indices yields stationary points with the same
potential energy. Sincehxnj are displacements and not posi-
tions of particles in a liquid, these permutations should be
counted asdifferentstationary points. Hence there are

PsN+,N0d =
N!

N+ ! N0 ! N−!
s17d

stationary points of classsN+,N0,N−d, where

o
s

Ns = N, s18d

i.e., N−=N−N+−N0. The characterization of all stationary
points byN+, N0, andN− or, equivalently, by

as =
Ns

N
, o

s

as = 1 s19d

proves (see, e.g., Sec. III) to be extremely useful. Having
specifiedas we can determineHeffsa+,a0d from Eqs. (14)
and (16):

Heff = H + mo
s

asxssHeffd. s20d

[We omit the argumentsH andm for brevity and we take into
account thata− can be expressed bya+,a0, due to Eq.(19).
Also we will mostly drop the argumentssa+,a0d of Heff.]
Finally the stationary points of classsN+,N0,N−d are given
by

and its permutations. Similarly for the potential energy per
particleysa+,a0d follows:

ysa+,a0d = o
s

asV0sxssHeffd,Hd −
1

2m
fHeff − Hg2. s21d

Figure 1 presentsysa+,a0d as a function ofa+ for different
values of the parameters.

Equation(21) holds for uHeffuøHc. One can easily prove
that the latter is guaranteed for arbitraryhasj with osas=1 if

− Hcs1 − 3md ø H ø s1 − 3mdHc. s22d

This implies thenecessarycondition m,1/3 (cf. also Ref.
[24]). m=1/3 is acritical value for the coupling parameter at
which the PES changes qualitatively. If inequality Eq.(22) is
violated, the stationary points arenot uniquely classified by
hasj [26]. Therefore we will restrict ourselves tomø1/3, in
the following. What remains to be done is to determine the
saddle indexns of these stationary points. The answer is
simple [24], because

ns ; a0. s23d

This has been proven forH=0 in Ref.[24] by determination
of the numberNs of negative eigenvalues of the Hessian at
stationary configurations withN0 fixed. The result is that
Ns=N0, which implies Eq.(23). Validity of Eq. (23) can also

FIG. 1. (a) a+ dependence ofysa+,a0d for m=0.2 andH=0; (b)
same forH=0.1. Dotted lines locate the maxima. Note the concav-
ity of ysa+,a0d in a+ for Hù0 and its symmetry with respect to the
maximum positiona+

max=s1−a0d /2 for H=0.
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be seen as follows. Ifm=0 andHù0, the stationary points
of V are given by those ofV0 and the sign of the eigenvalues
of the Hessian equals the sign ofV09. SinceN0 is the number
of particles with positionx0sHd, which is on the concave part
of V0, i.e., V09fx0sHdg,0, it is N0=Ns. Ns is a topological
invariant for 0øm,1/3. Consequently Eq.(23) remains
true for all m,1/3 and allH obeying Eq.(22).

III. STATISTICS OF STATIONARY POINTS

A. Saddle index distribution

We have shown in Sec. II that all stationary states of the
mean-fieldf4 model are characterized byhasj, provided in-
equality Eq.(22) holds. a0=ns is the saddle index. Conse-
quently there are in total 3N stationary points, from which 2N

are local minima. The saddle index distribution follows from
Eq. (17):

psnsd = 3−N o
N+=0

N−Ns

PsN+,Nsd =
3−N2N−NsN!

Ns ! sN − Nsd!
. s24d

Using the Stirling formula forN@1 one obtains

psnsd , expfNssnsdg,

where the configurational entropy is given by

ssnsd = − Fns ln ns + s1 − nsdln
1 − ns

2
G . s25d

The maximum ofpsnsd is at ns
max=1/3 which is obvious

sincePsN+,N0d has a maximum atN+=N0=N−;N/3. It is
interesting that this result based on the double-well character
of the local potential, coincides with the numerical finding
for binary Lennard-Jones clusters[17]. We stress that the
validity of ns

max=1/3 is more general. Suppose there are no
interactions. Then theN-particle problem separates into that
of N independent particles in double wells, for which
PsN+,N0d is still given by Eq.(17). Turning on an arbitrary
interaction will not destroy the one-to-one correspondence
between stationary points andsN+,N−,N0d, up to a critical
interaction strength. At this critical strength, e.g., exponen-
tially many metastable configurations may become unstable.
Accordingly, ns

max=1/3 holds up to that critical coupling,
i.e., it is a topological invariant.

B. Calculation of the density of statesp„e,ns…

The density of stationary points of a PES with energye
and saddle indexns that was mentioned in the Introduction is
defined by

pse,nsd = o
N+=0

N−N0

PsN+,N0dd„ysa+,a0d − e…, s26d

wherePsN+,N0d is given by Eq.(17) and

N0 = a0N = nsN, N+ = a+N.

The densitypsed of stationary points with energye follows
from

psed = o
N0=0

N

pse,nsd, s27d

Neglecting the irrelevant prefactor one can immediately
write sa0=nsd

pse,nsd , P„N+se,a0d,N0…, s28d

whereN+se,a0d=a+se,a0dN follows from the solution of the
equation

ysa+,a0d = e. s29d

This equation has two solutionsa+
±sa0,ed which are derived

and discussed in Appendix B.
With the use of the Stirling formulaPsN+,N0d simplifies

to PsN+,N0d,expfNsse,a0dg, thus one obtains Eq.(3) with
the configurational entropy given by

sse,a0d = − a0 ln a0 − a+
s+d ln a+

s+d − a−
s+d ln a−

s+d, s30d

wherea−
s+d=1−a0−a+

s+d and we have taken thes+d branch of
Eq. (B1) that makes the dominant contribution into
PsN+,N0d for H.0. ForH=0 one can also restrict oneself to
a+

s+d, due to the symmetry. Note thatpse,nsd is nonzero and
given by Eq.(3) only in the energy window

yminsa0d ø eø ymaxsa0d, s31d

where yminsa0d=ys1−a0,a0d (see Fig. 1) and ymaxsa0d is
given by Eq.(A7), otherwisepse,nsd=0. Alternatively one
can say that Eq.(3) is valid in the window of saddle indices

a0
smindsed ø a0 ø a0

smaxdsed, s32d

where the boundary values satisfyyminsa0
smaxdd=e and

ymaxsa0
smindd=e. From Eq.(A7) one finds

a0
smindsed = 1 + 4e− 2H2/m, s33d

whereasa0
smaxdsed can be found with the help of Eq.(21) or,

approximately, with the help of Eq.(A5). The dependence of
sse,nsd on ns is shown in Fig. 2 for zero and nonzero field.

Let us discuss the main features ofsse,nsd presented in
Fig. 2. For a more detailed analytical discussion ofsse,nsd
the interested reader is referred to Appendix B. We begin
with H=0 [see Fig. 2(a)]. The maximum ofsse,nsd with
respect tons is denoted byn̄ssed. Because of the relation
betweenpse,nsd and sse,nsd given by Eq.(3) it is obvious
that forN→` the maximum positionn̄ssed is identical to the
averaged saddle indexn̄ssed given by Eq.(4). In Appendix B
the existence of acritical energyecsmd is proven.sse,nsd as
function of ns has a maximum within the domain ofns for
e,ecsmd and a maximum at the left border of its domain for
eùecsmd. This implies that the slope]sse,nsd /]ns at nssed is
continuous ine, but not differentiable, i.e., the “curvature”
]2sse,nsd /]ns

2 is discontinuous ine at e=ecsmd. This is the
origin of the topological singularity, discussed below. Figure
3(a) presentsn̄ssed and reveals the singularity atecsmd. Note
that n̄ssed contains a branch that is independent of the inter-
action [see Eqs.(B6) and (B7)]. For e very close to the
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ground state energyv0smd [cf. (A6)] one obtains the power-
law behavior

n̄ssed , fe− v0smdgdsmd s34d

with dsmd.1, if m is small enough. Note thatn̄ssed→0 for
e→v0smd. The averaged saddle indexn̄ssed takes the critical
value ns

scdsmd= n̄s(ecsmd) shown in Fig. 4. This figure also
includes the asymptotic result of Eq.(B5) for m→0.

Instead of fixinge, one can also determine the maximum
position ēsnsd of sse,nsd for given ns. ēsnsd is the averaged
saddle energy[cf. Eq. (5)] as function ofns. It is easy to get
ēsnsd, since the number of stationary configurations is maxi-
mal for a+=a−=s1−nsd /2. This yields for the effective field
Heff(a+=s1−nsd /2 ,a0=ns);0 which implies x±(a+=s1
−nsd /2 ,a0=ns)= ±1 and x0(a+=s1−nsd /2 ,a0=ns)=0 and
this in turn leads to

ēsnsd ; v„a+ = s1 − nsd/2,a0 = ns… = − s1 − nsd/4. s35d

The reader should note that(i) the inverse functionnssēd
(see Fig. 6) of ēsnsd turns to zero atē=−1/4 which equals the
lowest energy of the on-site potential, but is above the
ground state energyv0smd and(ii ) ēsnsd is not the inverse of
n̄ssed. This difference is related to the fact that the maximum

of pse,nsd with respect tons for fixed e is not generally
related to its maximum with respect toe for fixed ns.

Now let us takeHÞ0 [see Fig. 3(b)]. As discussed in
Appendix B,sse,nsd has always a maximum atn̄ssed as func-
tion of ns within its domain.n̄ssed is shown in Fig. 3(b). The

FIG. 2. (a) Configurational entropysse,nsd versusns for differ-
ent energies and zero field;(b) same for nonzero field.

FIG. 3. (a) Averaged saddle indexn̄ssed versuse for m=0.1,0.2,
1/3 andH=0; (b) same form=0.2 andH=0 andH=0.15.

FIG. 4. m-dependence of the critical average saddle indexns
scd

3smd for 0ømø1/3 (solid line). The dashed line is the asymptotic
result Eq.(B5) for m!1.
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nonsingulare-dependence forHÞ0 can clearly be seen. The
average energyēsnsd or its inversenssēd can be derived ana-
lytically (see Appendix B). The result fornssēd is shown in
Fig. 5.

Having determinedn̄ssed for H=0 andHÞ0, one can now
calculate the energy-dependent configurational entropy that
follows from Eq.(27), in the limit N→`,

ssed = s„e,n̄ssed…. s36d

The result is shown in Fig. 6. As can be seen from Fig. 6(b),
ssed has a discontinuous second derivative forH=0 at e
=ecsmd. In Fig. 6(a) these points are marked by circles. The
high-energy branch ofssed has the form of Eq.(25) with
n̄ssed⇒1+4e. It attains a maximum forn̄ssed=1/3 that im-
plies e=−1/6, independently of the interaction.

C. Euler characteristic x„e…

It turns out that for the model under consideration in the
limit N→` the Euler characteristic of Eq.(1) satisfies

uxsedu , psed,
1

N
lnuxsedu = ssed. s37d

Calculation ofxsed for largeN is similar to that ofssed, as
suggested by the similar form of Eqs.(2) and (3). The only
difference is thatMse,Nsd used in the calculation ofxsed is,
unlike pse,nsd, nonzero forymaxsa0d,e. In this case it is
independent of the energy and has the form

MsNsd =
2N−NsN!

Ns ! sN − Nsd!
, s38d

similar to Eq.(24). Hence there are two different contribu-
tions into xsed. It can be easily shown that the contribution
from the rangeyminsa0d,e,ymaxsa0d for N→` coincides
with that of psed,expfNssedg that was studied above up to
an irrelevant prefactor, in spite of the sign alternation in Eq.
(1). In contrast, the contribution from the range ofNs deter-

mined byymaxsa0d,e is dominatednot by the maximum of
MsNsd on Ns but by Ns on the boundary of its interval, i.e.,
by Ns satisfyingymaxsNs/Nd=e. One can easily see that this
contribution to xsed never exceeds that from the range
yminsa0d,e,ymaxsa0d, thus one obtainsuxsedu,psed for N
→`.

The reason for such peculiar behavior of the contribution
from the regionymaxsa0d,e is the sign alternation inxsed
plus the specific form ofMsNsd. For instance, as all station-
ary points are below the levele=0, one findsxsed for e.0,
by just summing over allNs,

xse. 0d = o
Ns=0

N

s− 1dNsMsNsd = 1.

This result is exact and it has a transparent topological mean-
ing. Replacing the sum by the maximal summand value
MsN/3d would be an error. Even simplifying Eq.(38) with
the help of the Stirling formula forN@1 in the sum would
lead to an exponentially large result instead of 1. Therefore,
one should be cautious in applying the saddle point method
to the right-hand side of Eq.(1).

FIG. 5. Saddle indexnssēd versus averaged energyē for m
=0.2 andH=0 and 0.15.

FIG. 6. (a) Energy dependence of the configurational entropy
ssed for different interaction strengthm, with and without field.
Dashed line is the solution form=0 andH=0 and the circle indi-
cates the location ofecsmd; (b) Derivative of the configurational
entropy showing a transition ate=ecsmd for H=0.
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IV. DISCUSSION

We have investigated the statistics of stationary points and
topological properties of the analytically tractable potential
energy surface of af4 model in a symmetry-breaking fieldH
with interaction of all pairs of particles with the same
strengthm. For this model the mean-field approximation be-
comes exact in the thermodynamic limitN→`. For H=0
there is a second-order phase transition at the critical tem-
peratureTcsmd that is analytical inm.

We have shown that the distribution of the saddle indices
psnsd, wherens=Ns/N andNs is the number of unstable di-
rections at a stationary point has a maximum atns=ns

max

=1/3. Interestingly this value is consistent with that found
for small binary Lennard-Jones clusters[17]. Whether or not
this is an accident is not clear. Our result originates from the
fact that all stationary points can be labelled by symbolic
sequences ss1,… ,snd with sn= + ,0,−. The low-
temperature anomalies of structural glasses are usually ex-
plained by the existence of two-level systems arising from an
ensemble of double-well potentials. As the smallest “unit” of
a PES of a classicalN-particle system, one may choose the
local minima including their basins of attraction. But such a
choice does not fully encompass the saddle. Taking the next
larger unit, a pair of local minima and their common saddle,
one arrives at a double-well characterization of the PES. This
could explain whyns

max=1/3 for small clusters and for liq-
uids. We have also argued that the valuens

max=1/3 is a to-
pological invariant for an entire family off4 models. In any
case, it would be important to determinens

max for other, e.g.,
liquidlike models and to check whether it equals againns

max

=1/3.
For our model the absolute value of the Euler character-

istic xsed is essentially the same as the density of stationary
points psed in the limit N→`, see Eq.(37). It would be
interesting to investigate the generality of this result.

For H=0 we have found a singularity inpsed and thus in
uxsedu at the energyecsmd given by Eq.(B5). ecsmd is nonana-
lytic in m. At e=ecsmd the second derivatived2 lnuxused /de2

is discontinuous, as found for the models studied in Refs.
[10–13]. In agreement with these papers, we also have found
that the topological singularity disappears for nonzero field,
as well as the thermodynamic singularity. In this respect, we
would like to mention a recent publication Ref.[27], where it
is proven that a topological singularity is anecessarycondi-
tion for a thermodynamical transition to take place. How-
ever, at variance with earlier work[10–13], this singularity is
not related to the thermodynamic singularity of our model as
ecsmd does not coincide withycsmd, the average potential
energy at temperarureTcsmd.

The reasons for this discrepancy can be made clear with
the help of the following argument. Let us smoothly modify
the local potentialV0sxd in the intervalsf−` ,−1−«smdg ,
f−1+«smd ,−«smdg , f«smd ,1−«smdg, and f1+«smd ,`g for
given 0,«smd,1. If m is small enough, which implies that
the internal field is small enough, then the three roots of Eq.
(15) are within the intervalsfs−«smd ,s+«smdg , s= + ,0,−,
in which the potential has not been modified. Accordingly,
the roots and therefore the stationary points and their ener-

gies are the same. This implies thatecsmd is the same. How-
ever, since the calculation ofTcsmd [cf. Eq. (11)] involves
V0sxd for all x, the critical temperature will be different for
the modified on-site potential.

The discrepancy between the topological and thermody-
namic singularities can also be traced back to an unjustified
comparison of a continuous model(thermodynamics) and a
discrete model(topology). More logically, the energy of all
the stationary points can be represented by an Ising-type
HamiltonianHshsijd (for m,1/3) with si = + ,0,−. The cor-
responding canonical partition function ZsTd=Tr
expf−Hshsijdg can be calculated from the density of states
psed as

ZsTd =E de psedexpf− Ne/Tg. s39d

Evidently a singularity ofZsTd at the corresponding transi-
tion temperatureTc8 results from the underlying singularity of
psed at ec. Obviously in this caseyc8smd=kHlsTc8d /N=ecsmd is
fulfilled. But the thermodynamics of this discrete model does
not coincide with that of the original continuous model, in
particular,Tc8ÞTc.

The idea of an at least qualitative relationship between the
thermodynamic singularity and the topological singularity is
supported by the following observation. At the thermody-
namic transition point there appears a spontaneous breaking
of the left-right symmetry for the displacements, which is
equivalent to emerging of a nonzero temperature-dependent
internal field forT,Tcsmd. On the other hand, the stationary
configurations withe.ecsmd and with maximum weight cor-
respond toa+=a−. This implies that the effective field de-
fined by Eqs.(14) and (16) satisfiesHeff=0. However, for
e,ecsmd it is a+Þa− and henceHeffÞ0. Therefore, a spon-
taneous symmetry breaking occurs at both singularities.

The energy or temperature dependence of the averaged
saddle indexn̄s seems to play a role for the dynamical fea-
tures of supercooled liquids. For the present model we have
found thatn̄ssed vanishes at the ground state energyv0, only.
This is consistent with recent results onn̄ssTd showing that
n̄s=0 at T=0, only [13]. Taking the analogy to mean-field-
like spin glass models, this would imply that no dynamical
transition (or crossover) could occur at finite temperatures
[22]. The averaged energyēsnsd as a function ofns is not the
inverse function ofn̄ssed. In particular nssēd vanishes at
e* sHd.v0. Whether dynamics changes qualitatively at
e* sHd or any other characteristic temperature would be in-
teresting to study.

Finally, we would like to mention that after submission of
this paper we learned about a similar study of the same
model [28], where the authors find, among others, the same
type of discrepancy between the thermodynamical and topo-
logical singularities.

APPENDIX A: PROPERTIES OF v„a+,a0…

In this Appendix we investigate the properties of
vsa+,a0d defined by Eq.(21). For the discussions in Sec. III,
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the first and second derivatives ofysa+,a0d with respect to
a+ will be useful. A straightforward calculation making use
of Eqs.(15), (16), and(20) yields

]ysa+,a0d
]a+

= V0„x+sHeffd,Heff… − V0„x+sHeffd,Heff….

sA1d

SinceHeff=0 implies x±= ±1 [see Eq.(15)] it follows that
]ysa+,a0d /]a+=0 for Heff=0. That is, the maximum of
ysa+,a0d with respect toa+ corresponds toHeff=0. For the
second derivative we get

]2ysa+,a0d
]a+

2 = − fx+sHeffd − x−sHeffdg
] Heffsa+,a0d

] a+
sA2d

with

]Heffsa+,a0d
]a+

= m
x+sHeffd − x−sHeffd

1 − mo
s

as

3xs
2sHeffd − 1

. sA3d

Since x+−x−.0, the “curvature”]2y /]a+
2 is negative, i.e.,

ysa+,a0d is concave ina+, provided]Heff /]a+.0. This is
true if m is small enough, as can be seen from Eq.(A3).

The functionysa+,a0d can be computed analytically near
its maximum ina+ by using the expansions

x−sHeffd > − 1 +Heff/2,

x0sHeffd > − Heff,

x+sHeffd > 1 + Heff/2 sA4d

nearHeff=0. The result is a parabola ina+,

ỹsa+,a0d > − 1
4s1 − a0d +

H2

2m
−

1

2m

fH + ms2a+ + a0 − 1dg2

1 − ms1 − 3a0d/2
.

sA5d

Analysis shows that corrections to this formula in the whole
region 0øa+ø1−a0 are of orderm3,m2H, and mH2, i.e.,
Eq. (A5) is a very good approximation for not too largem.
For instance, the ground-state energy following from Eq.
(A5) in the caseH=0,

ỹ0smd = ỹs0,0d = −
1

4
S1 +

2m

1 − m/2
D ,

is in accord with the exact twofold degenerate ground-state
energy,

y0smd = ys1,0d = ys0,0d = − 1
4s1 + md2, sA6d

up to the termsm2, and the relative error is only 0.0125 for
m=1/3. Theexact value of the field-dependent maximal po-
tential energy that also follows from Eq.(A5) has the form

ymaxsa0d = −
1

4
s1 − a0d +

H2

2m
. sA7d

The corresponding exact value ofa+ is

a+
smaxdsa0d =

1 − a0

2
−

H

2m
. sA8d

Equations(A7) and (A8) are thus valid foruHuøms1−a0d.

APPENDIX B: CONFIGURATIONAL ENTROPY

In this Appendix we present analytical results for the con-
figurational entropysse,nsd. In particular, forH=0 the exis-
tence of a critical energyecsmd will be proven, at which
singular energy dependence occurs.

First we have to investigateysa+,a0d. It is convenient to
use the approximate form ofysa+,a0d given by Eq.(A5).
Then Eq.(29) becomes quadratic, and one obtains two solu-
tions

a+
s±d = a+

smaxdsa0d ±Îfymaxsa0d − egf1 − ms1 − 3a0d/2g
2m

,

sB1d

where a+
smaxdsa0d and ymaxsa0d are given by Eqs.(A8) and

(A7), respectively. Note that this result becomes exact for all
m with 0,mø1/3 provided thate is close toymaxsa0d.

The density of stationary pointspse,nsd can be used to
calculate the statistics of saddle indices, see Eqs.(4)–(6). The
value of n̄ssed that maximizes the entropysse,a0d on a0 is
the solution of the equation

]a+
s+d

]a0
ln

1 − a0 − a+
s+d

a+
s+d + ln

1 − a0 − a+
s+d

a0
= 0 sB2d

for a0, if this solution exists in the interval of Eq.(32).
Otherwise the maximum ofsse,a0d is attained at the left
boundary of thea0 window,a0=a0

smindsed [see Fig. 2(a)]. The
latter solution exists only forH=0. It corresponds to the
maxima of the curvesysa+,a0d in Fig. 1(a), i.e., to

a+
s+d = a+

s−d = a+
smaxdsa0d =

1 − a0

2
. sB3d

One can see from Eq.(B1) that ]a+
s+d /]a0 diverges fore

→ymaxsa0d, i.e., fora0→a0
smindsed. One can check that in the

caseH=0 this divergence is compensated for by the log
factor that tends to zero. ForHÞ0 there is no such compen-
sation, and the left-hand side of Eq.(B2) diverges ata0

→a0
smindsed, thus Eq.(B2) always has a solution, see Fig.

2(b).
Let us consider the caseH=0 and find the condition that

the solution of Eq.(B2) is justa0=a0
smindsed. Simplifying this

equation fore→ymaxsa0d one obtains the transcedental equa-
tion

−
1 − ms1 − 3a0d/2

4ms1 − a0d
+ ln

1 − a0

2a0
= 0. sB4d

Its solutiona0
scdsmd;ns

scdsmd that is plotted in Fig. 4 and the
corresponding energyescdsmd are critical parameters that de-
fine the boundary between different regimes. In particular,
a0

scds1/3d.0.1774 andescds1/3d.−0.2056. Form!1 one
can solve Eq.(B4) analytically,
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ns
scdsmd ; a0

scdsmd >
1

2
expS−

1

4m
D ,

ecsmd = −
1 − ns

scdsmd
4

> −
1

4
+

1

8
expS−

1

4m
D . sB5d

Note thatescdsmd is always above −1/4, the ground-state en-
ergy without interaction. Now one can write down the com-
bined expression forn̄ssed in the caseH=0,

n̄ssed = 5n̄s
,sed, y0smd ø eø ecsmd,

n̄s
maxsed, ecsmd ø eø 0,

0, 0ø e.
6 sB6d

Here y0smd is the ground-state energy,n̄s
,sed is equal toa0

that solves Eq.(B2), and

n̄s
maxsed = 1 + 4e. sB7d

Note that the high-energy branchn̄s
maxsed is independent ofm

and is thus the same as for a system of noninteracting par-
ticles. This contribution is due to the maxima ofysa+,a0d
[see Eq.(B3)] whereasn̄s

,sed is the contribution from the

energy levels below this maximum. One can show that
n̄ssed→0 for e→y0smd. This dependence has the form given
by Eq. (34). However this dependence is only realized for
the energies very close to the ground statey0smd. The func-
tion n̄ssed is shown in Fig. 3 forH=0 andHÞ0. It has a
discontinuous derivative ate=ecsmd in zero field. This dis-
continuity disappears forHÞ0.

One can also usepse,nsd to calculate the average energy
ēsnsd for a givenns. From the second of Eqs.(6) one obtains

ln
1 − a0 − a+

s+d

a+
s+d = 0,

which is simpler than Eq.(B2). From its solution

ēsnsd = −
1 − ns

4
−

H2

4

1 − 3ns

1 − ms1 − 3nsd/2
sB8d

one obtainsnssēd shown in Fig. 5 that is almost linear inē in
the considered range of parameters, Eq.(22). Note that, in
contrast ton̄ssed, the quantitynssēd found from Eq. (B8)
turns to zero not at the ground-state energy but atē=−1/4
−H2/ f2s2−mdg.
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